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The density of emission current by a rough surface with fractal structure is analyzed. A possible experimen-
tal setup is modeled by an irregular emitting surface, iteratively generated by a fractional Brownian motion
�FBM� algorithm with roughness �or Hurst� exponent H=0.3 and a far away plane representing the anode. The
boundaries are held at a fixed potential difference and the Laplace’s equation, with lateral periodic conditions,
was numerically solved. The solution for the potential leads to the evaluation of the local field and, subse-
quently, the current density evaluated by using the Fowler-Nordheim’s approach. The results hint at a strong
local dependence of the electric field with small variations in the roughness of the irregular boundary. The
value of the turn-on electric field is found to be �8�106 V /cm. Finally, Fowler-plot curves make possible to
discuss the connection between the field amplification factor and geometric properties of the emitter surfaces.
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I. INTRODUCTION

Cold field emitters have attracted a great deal of attention
since they are good candidates for compact and controllable
electron sources, which are important elements in vacuum
microelectronic and nanoelectronic devices.1 Since some ap-
plications require strong electric currents under low voltages,
investigations of low work-function materials or structures
are of great practical importance. The next generation of
such electron emitters requires a fine tuning of several pa-
rameters such as material work function, surface structure,
field strength, and temperature, in order to warrant that most
part of the emission originates from electronic energy levels
in the vicinity of the potential barrier. Apart from the issue of
evaluating the electronic levels, there subsist several difficul-
ties for the emission problem that arise from classical elec-
trostatic issues related to field emission. Therefore, the accu-
rate description of the electrostatic field with the
inhomogeneous geometry of the surface is becoming a
timely and very relevant research topics for the theory of
field emission by very small scale devices.

Nanometer size metals and semiconductors have good
emission properties and also the necessary reproducibility for
large scale production. As an example, diamond and carbon
nanotube cold cathodes are able to emit electrons at very low
electric fields.2 This effect results from the geometric field-
enhancement function, which is due to small variations in the
emitter shape or in the emitter surroundings, having a strong
influence on the produced current. Some results3,4 suggest

that a substantial reduction in the emitting field can be
achieved by increasing the self-similarity of the cathode sur-
face that can be described by a fractal structure. Bonard
et al.5 measured the field emission of individual carbon
nanotube and nanowire emitters by scanning electron mi-
croscopy �SEM�, concluding that the nanotube geometry and
its distance to the anode are important factors for field emis-
sion. In addition, several measures on single silicon emitters
and silicon emitter arrays reveal that the turn-on field of an
individual emitter is much higher than that of an emitter
array consisting of several hundreds of nearly identical units.

On the theoretical side, some ab initio calculation results
have been reported for the field emitting properties of a car-
bon linear chain with work function of the order of a few eV.
Bianchetti et al.6 used density-functional theory �DFT� in the
presence of a constant electric field to show that chain polar-
ization has important effects in the electron emission. In a
related work, Araidai et al.7 also used DFT in diamond sur-
faces with subsurface hydrogen substitutional defects. The
results show that the ionization energy of hydrogen atoms is
small, suggesting that the large experimentally observed
emission currents by diamond surfaces are due to the pres-
ence of structural irregularities.

In previous works,8,9 some of us explored the scaling be-
havior of equipotential surfaces in an electric field generated
by conductors with fractal geometry. The results were ana-
lyzed for models of D+1 dimensions, with D=1,2. In Ref. 8
the influence of the self-affine conductor in the roughness
exponent quantifying the irregularities of equipotential pro-
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files was investigated. Afterward,9 the average electric-field
dependence on the boundary roughness was studied. In both
contributions, the scaling properties of both equipotential
profiles and surfaces close to the boundary reveal fractal
properties which correlate with those of the basal surface.

The purpose of this work is to present a theoretical analy-
sis of the influence of the fractal structure of cold emitted
conductors on the emission properties. We discuss the con-
nection between the geometrical properties of the emitter
surface, fractal dimension df, roughness W, and the local
intensity of electric field. In our opinion, the consideration of
these issues can contribute to improve the understanding of
two specific points: �i� how the surface fractal dimension and
protuberances affect the emission, and �ii� how the presence
of irregularities in the metal corrugated surfaces at nanomet-
ric scale influences the electron emission density by an
effective-field amplification.

The organization of the paper is as follows. We start by
modeling the irregular cathode by self-affine surfaces pro-
vided by the fractional Brownian motion �FBM� algorithm,
and solving Laplace’s equation for the electrostatic problem
in 2+1 dimensions. Periodic conditions are considered along
the x and y directions. The emission current follows from
Fowler-Nordheim �FN� approach, while the evaluation of the
roughness exponent is done by using the root-mean-square
�rms� methodology.10 In Sec. II, the theoretical framework of
the methods used for generating the self-affine surfaces and
the field emission calculations are presented. Section III is
devoted to the presentation and discussion of results, thus
providing a connection between the geometric features of
irregular surface emitter and the current density. Finally, we
conclude in Sec. IV by summarizing our main conclusions.

II. METHODOLOGY

A. FBM Model

FBM algorithms11 generate random self-affine objects
with a specific roughness exponent. In one dimension, this
leads to a random sequence, z̄�t�, of a certain parameter t.
The variable z̄ has Gaussian distribution increments, z̄�t2�
− z̄�t1�, its variance being proportional to �t2− t1�2H with 0
�H�1. This means that, starting at t0=0 with z̄�t0�=0, the
two functions z̄�rt� and rHz̄�t�, where r is an scale parameter,
are statistically undistinguishable. For any given z̄0, the set of
values of t satisfying z̄�t�= z̄0 are points on a self-affine frac-
tal of dimension df =1−H.

Any FBM algorithm can be generalized to higher dimen-
sions, with a multidimensional process z̄�t1 , t2 , . . . , tn�, where
all directions are statistically equivalent. In this work, the
self-affine sets are constructed by the FBM midpoint dis-
placement algorithm.12 This corresponds to a FBM in a lim-
ited interval �0,1�, which can be later conveniently rescaled
to the size of the system we intend to model. The method
starts by fixing the values of z̄ at the interval end points, i.e.,
z̄0=0 and z̄1, where z̄1 is obtained by a randomly process
with a given variance �2. Next, the interval is further parti-
tioned into two subintervals, and the midpoint value z̄�0.5� is
calculated as the average between z̄0 and z̄1 plus a random
displacement �1. That is

z̄�0.5� = 0.5�z̄0 + z̄1� + �1. �1�

Displacement �1 is a random Gaussian variable with vari-
ance �1

2��2 /22H. In this way, the profile Hurst exponent, H,
is a parameter of the generating algorithm. The same itera-
tive process is repeated for each new interval, i, of the gen-
eration n, i.e., we successively evaluate the displacements
�n,i , i=1, . . . ,2n, with the help of Eq. �1�, where variances �n

2

are proportional to �2 /22nH for generation n, while the value
of H is kept constant.

In this work, we consider the situation in which z̄�x ,y�
� z̄�t1 , t2� represents the height of point �x ,y� in an irregular
surface. The midpoint algorithm leads to a fractal self-affine
surface, with fractal dimension df =3−H. In the correspond-
ing iterative process, the set of points �x ,y� satisfying
z̄�x ,y�= z̄0 constitutes a set of statistically self-similar curves,
with fractal dimension df =2−H.

The algorithm starts with an square in the plane, with
vertices placed at �xA ,yA� , �xB ,yB� , �xC ,yC�, and �xD ,yD�, and
corresponding heights z̄A , z̄B , z̄C, and z̄D. The height, z̄E, of
the point at the square centroid, �xE ,yE�, is then vertically
displaced from the average for z̄A , z̄B , z̄C, and z̄D in a random
way, just as in the one-dimensional case. In this way, we give
raise to four triangles, formed by connecting z̄E to the points
z̄A , z̄B , z̄C, and z̄D. In the next generations, g, the same proce-
dure is repeated by inserting a new point in the centroid of
each existing triangle, the height z̄ of which is taken as a
random variable evaluated according to the prescription de-
scribed above. The number of new sites increases as g3, and
the process is pushed forward until the a priori established
maximal value for n is reached.

In this work, any thermal effect due to high intensity elec-
tric currents is neglected. This is reasonable assumption
based on recent results from experimental works13 indicating
that current densities of �108 A /cm2 increase thermal resis-
tivity in large roughness emitters. Since we use the FBM
model with a relatively small value of H, we can be sure that
the distance between peaks and valleys in the surface land-
scape is not very large and thermal effects are not important.

B. Field emission calculations

Field emission in metals is known to be essentially due to
tunneling process. The transition probability for an electron
to tunnel through the potential barrier and the number of
incident electrons must then be estimated. In this way, evalu-
ation of tunneling probabilities requires the determination of
field emission current densities as a function of the electric
field. Given the severe numerical difficulties implied in the
evaluation of the electric-field intensity at the actual conduc-
tor irregular surface z̄�x ,y�, we approximate the actual emit-
ting surface by an idealized z�x ,y�. Here, z represents the
height of an equipotential surface z��

�x ,y�, associated to a
very small nonzero value of the electric potential value ��,
so that it lies very close to the actual surface where �0=0.
This technique has also the advantage to allow the possibility
of mimicking surface emitter with different roughness. De-
tails and reliability of this procedure have been given
previously9 and then will not be discussed here.
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The electrostatic problem consists of numerically solving
Laplace’s equation,

�2� = 0. �2�

with Dirichlet conditions at the boundaries and periodic con-
ditions in the sidewalls. The upper boundary of the problem
consists of a plane anode, which is set at a fixed potential
value, �A. We obtained results for �A���=100+50��−1�,
with �=1, . . . ,9. For each value of �A, the solution ��r�� was
obtained by solving Eq. �2� in an equally spaced discretized

grid, consisting of L�L�M points R�= �i , j ,k�, with i , j ,k
�N. In order to cope with experimentally realizable condi-
tions, we assume L	M. The coordinates r�= �x ,y ,z� of the
equipotential surfaces, z��

�x ,y�, which do not necessarily lye
on the grid points, are obtained by an interpolation proce-
dure. Similarly, the components of the electric field

E
�r→� = − �
��r�� , �3�

where 
 denotes the field component �x, y, or z� at any point
r� of an equipotential surface, can be expressed in terms of

the respective components E
�R��, at the eight grid points
defined by the corners of the regular cube of unit volume
within which r� lies. Interpolation is then performed accord-
ing to

E
�r�� = rnorm �
�,m,n=0

1
E
�i + �,j + m,k + n�

rx�ymzn

. �4�

In Eq. �4�, variables rx�ymzn
denote the distances from r� to

each of the cube corners, i.e.,

r�,m,n = ���
2 + �m

2 + 
n
2, �5�

where

� = x − i, � = y − j, 
 = z − k , �6�

while

1

rnorm
= �

�,m,n=0

1
1

rx�ymzn

. �7�

From the definitions in Eqs. �5�–�7�, it follows that −1
��� ,�m ,
n�1, and 0�r�,m,n��3. It is also clear that if r�
coincides with any of the eight corners R, i.e., when �=m
=n=0, both rnorm and r0,0,0 identically vanish, so that the

contribution to E
�r�� only comes from the field at R� �in this

particular case, from R�= �i , j ,k��. This limiting case indicates
that Eq. �4� correctly averages the contribution from the
eight vertices to the local field at r�.

To find the emission current density J, we make use of the
FN approach,14 which has been systematically applied in
problems where one has to optimize processes in small scale
emitting devices. According to this framework, J is related to
the local electric-field intensity for an electron close to the
Fermi surface trying to tunnel through a triangular potential
barrier, the top of which is much higher than the Fermi en-
ergy.

The electron emission is described by the tunneling prob-
ability, which can be evaluated from the following one-

dimensional, time-independent Schrödinger equation,

−
�2

2m

d2�

dx2 + U�x�� = �� �8�

or

d2�

dx2 =
2m�U�x� − ��

�2 � . �9�

Assuming that U�x�−� is independent of x for a thin interval
limited by x and x+dx, the solution of Eq. �9� can be written
as

��x + dx� = ��x�exp�− kdx� , �10�

where k=�2m�U�x�−�� /�. The negative sign in the expo-
nent of Eq. �10� comes from the assumption that the electron
moves from left to right. For a smooth variation in U�x�, the
wave-function amplitude at ��x2� is related to ��x1� by the
WKB approximation:

��x2� = ��x1�exp	− 

x1

x2 �2m�U�x� − ��
�

dx� . �11�

Since the transmission probability T is expressed by

T =
��x2����x2�
��x1����x1�

, �12�

we finally arrive at the expression

T = exp	−
2

�



x1

x2 �2m�U�x� − ��dx� . �13�

To obtain the current density, J, we take into consider-
ation that the electric field, E
, caused by the anode potential
controls the width of the potential barrier �−qE
x through
which an electron may tunnel, � being the material work
function and q the electron charge. By inserting the expres-
sion for this potential barrier into Eq. �13�, it follows quite
easily that the “cold” current density, J, is proportional to the
mean value of the transmission coefficient �T
 which, for the
case of a three-dimensional configuration, becomes

J =
q3�Ē�2

16�2��
exp	−

�32m�3/2

3q�Ē
� =

K�Ē�2

�
exp	−

N�3/2

Ē
� ,

�14�

where Ē is the resulting local field following from the com-
ponents E���,��


 , and parameters K and N have obvious defi-
nitions. It is usual to define the field amplification factor, �,

as Ē=�E0, where E0=�A��� /M is the uniform electric field
generated by two parallel plates separated a distance M. This
parameter gives the enhancement of the field taking place at
sharp tips. Moreover, this factor is related to the slopes in the
Fowler-Nordheim plots described in Sec. III.

III. RESULTS AND DISCUSSION

In the present paper, we intend to model rough tungsten
surfaces, for which the work function has a value of �
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=4.5 eV. Values of parameters K and N defined in Eq. �14�
were conveniently chosen so that J comes expressed in
A /cm2 units.15 Tungsten surfaces have been used for the
production of cathodes in high-vacuum lines and then they
have been thoroughly tested by microscopy techniques, such
as scanning field emission microscopy.16 Several experimen-
tal works discussing the use of different materials, including
tungsten, suggest that low intensity fields are able to trigger
the emission process, provided that the surface is prepared
with an irregular geometry in order to profit from the field
gain factor that has been measured in association with it.15,17

In Fig. 1, we illustrate an irregular surface produced by
the described FBM algorithm for a Hurst exponent H=0.3.
Figure 2 shows the behavior of the roughness, W�h�, as a
function of the scale size, h, for different approximations of
the emitting surface. According to the discussion presented
in Sec. II, we approximate the emitting surface by equipo-
tential surfaces evaluated at very low values of the potential
at the following values: ��= ��1 , . . . ,�4�, where �4=2�3

=4�2=10�1=1.00 V. The roughness W, measured in units
of dozens of nanometers, is estimated by the average value
of the dispersion of the height z by the rms method. It is
possible to notice that the difference in the small scale be-
havior of W leads to different values of the corresponding
roughness exponent H��

, and fractal dimensions df��
. These

follow from the evaluation of the slope of the curves that has
been performed in the scale interval �20,200� nm.

Let us discuss next the dependence of W�h� and df��

with

respect to the emitting properties of the material. Taking into
consideration that these magnitudes directly reflect the sur-
face topology, our results suggest strong differences on the
local values of J when different approximations for the po-
tentials �1 and �4 are considered. Despite the fact that the
global maxima, W�hmax�, are quite close �see Fig. 2�, the
resulting current densities are quite different. For instance,
when the anode potential is fixed at a value of �A��=2�

=150 V, we obtain J�1
/J�4

�102. Since the �1 equipotential
lies much closer to the actual surface, this result shows a
strong connection between the local charge density and the
local irregularities. The results also reveal the presence of
high local values of J for any ��, something that is related to
the scale-invariance properties of the emitting surface.

This claim is also supported by the curves for the distri-

bution of local-field intensities, ��Ē�, for the same fixed
value of the anode potential and the four different potential
values of the approximate emitting surface. This is shown in
Fig. 3�a�, where the distribution curves display significant
changes in the small values of the field intensity. The
changes indicate: �a� an increase in the frequency of very

small values of Ē, causing a displacement on the peak to the
left side; �b� a decrease in the distribution maximum, leading
to an increase in the dispersion. These two features are pro-
gressively enhanced as the approximate emitting surface gets
closer to the actual one, this corresponding to an increase in
the surface roughness. The increase in the number of points
with small field intensity when the roughness increases re-
sults from the fact that the points lying between two sharp
peaks have large field components E���,��


 in the horizontal
plane which, with high probability, cancel each other, leading

to small values of Ē. This has a direct influence on the mean
value of the electric field, which continuously decreases as
��→0. This result is in agreement with the interpretation
given in a previous paper.9 Finally, let us remark that we
have also presented superimposed in Fig. 3�a� a typical ex-
perimental value of the turn on field ��8�106 V /cm� for
tungsten surfaces18 in order to make clear that the intensities
obtained in this work are compatible with it. To compare the
results corresponding to rough and smooth surfaces, we have
also plotted in Fig. 3�a� the value of the constant electric
field produced between flat parallel anode and cathode �full

gray vertical line�, and the distribution ��Ē� for a very
smooth FBM surface �dashed line�. In both cases, we take
the corresponding anode-cathode distance as the average dis-
tance between the rough plane and anode, as defined in Ref.
9.

We have also evaluated the distribution of the local rough-
ness, ��Wl�h�� and its dependence on the characteristics of

FIG. 1. �Color online� Contour lines of an irregular surface gen-
erated by the FBM algorithm for a Hurst exponent of H=0.3.

FIG. 2. �Color online� Roughness of the equipotential surfaces,
W�h� calculated near the actual surface showed in Fig. 1 as a func-
tion of the scale size, h. The fractal dimension, df, related to equi-
potential surfaces is also given in the inset.
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the emitting surface. The results are shown in Fig. 3�b�,
where the distribution curves for the same potential values of
the emitting surface as in Fig. 3�a� are given. The local
roughness was evaluated with the algorithm described in
Ref. 19 which amounts to perform an scale-invariance analy-
sis on small square windows of size h=20 nm around each
point �x ,y�. The local roughness is then estimated by the
dispersion

Wl�h� =
1

nh
�
i=1

nh � 1

mi
�
��h

�z��x,y� − �z
�2, �15�

where nh, mi, and �z
 indicate, respectively, the total number
of square windows of side h, the number of points inside the
ith window, and the average height of the points in the con-
sidered window.

Comparison between Figs. 3�a� and 3�b� reveals a corre-
lation between the local roughness and the morphology of
the equipotential surfaces used to approximate the emitting
cathode. In the ��→0 limit, a decrease on the frequency of
points in the small local roughness Wl�h�, �i.e., in the interval
�5,7� nm� is observed, together with an increase in the fre-
quency for larger values of Wl�h�.

The dependence of emission properties on Wl�h� is also
supported by the analysis of the Fowler plots �FPs�, which
relates the average emission current, �J
, with respect to the
anode potential. The averaged value �J
 for an emitting sur-
face defined by �� and anode potential �A��� is evaluated by
summing over the local current density J=Jn , �n
=1,2 , . . . ,L�L�, which is given by Eq. �14�. Therefore, we
obtain

�J
 =
1

L � L
�
n=1

L�L

Jn. �16�

The results are shown in Fig. 4, where two different regimes,
distinguishing the high and low potential regions, are seen.
The first one is characterized by a linear dependence, sug-
gesting the existence of a threshold value after which elec-
trons are emitted by any site on the surface. In the low po-
tential region the linear dependence is lost, indicating that
the number of emitting points reduces and is dependent of
the material local roughness. The enhanced electronic emis-
sion by larger roughness surfaces is independent of the anode
potential, so that �J�1


� �J�2

� �J�3


� �J�4

 for any value of

�A���. This shows that the emission properties depend essen-
tially on the own features of the emitting surface. In this way,
it is possible to observe that the deviation from the linear
regime of the Fowler plot curves, for low values of the anode
potential, is more intense. Such result clearly indicates a cor-

(a)

(b)

FIG. 3. �Color online� �a� Distribution, ��Ē�, of the local

electric-field intensities, Ē, for different separation approximations
of the emitting cathode by equipotential surfaces defined by
��1 , . . . ,�4�. Two vertical lines indicate the position of the uniform
electric field produced by the cathode potential between two paral-
lel plane plates �full line� and the turn on field for the used rough
surface �dotted line�. In the first case, the distance between the
plates is evaluated using the average distance between the anode
and local cathode height z�x ,y� �see Ref. 9 for details�. The same

consideration is applied to a very smooth FBM emitter, whose ��Ē�
distribution is also showed �dotted line�. �b� Distribution, ��Wl�h��,
of the local roughness, Wl�h�, for the same approximate emitting
surfaces.

FIG. 4. �Color online� Fowler-Nordheim plot, representing how
the average current density depends on the anode electric potential
�A���. Circles, triangles, squares, and diamonds represent the emis-
sion surfaces defined by ��=�1 ,�2 ,�3, and �4, respectively.
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relation between the irregularities of the emitting surface and
its current-density intensity at low field. Furthermore, when
the surface roughness increases, the differences between the
corresponding values of J are less and less dependent on the
value of the anode potential. It is important to recall that, for
the system size L�L�M and values of ��A���� used herein,
the slope of curve �J��


 / ��A����2 as a function of 1 /�A��� has
not yet reached the limit value. Indeed, the number of void
local current densities, J��

, contributing to the average value
�J��


 depend on �A��� differently. This can be made clear by
following the value of J��

for some small surface patches.
So, the local slope of the FPs showed in Fig. 4 have a clear
dependence with the applied electric field, indicating more
effective surface emission in regions with higher voltages. At
sufficiently high voltages, when all surface is emitting, the
slope becomes constant and the value of emitting area satu-
rate.

Let us work out now one more evidence of the relation-
ship existing between the emission properties of a cathode
and the fractal dimension of its surface. For this purpose, we
define an artificial emission current surface zJ���,A�= f�x ,y�,
the height of which is equal to the current density produced
by the corresponding emission surface �� and anode poten-
tial �A. This definition makes it possible to evaluate the frac-
tal dimension of the virtual surface J�x ,y�, so that we can
check whether z�x ,y� and J�x ,y� have similar properties. In
this way it is possible to repeat the fractal analysis for the
surface zJ���,A�= f�x ,y�. The corresponding results are shown
in Fig. 5, where the behavior of the fractal dimension df ,J,
normalized to its largest value d�f , J�max

for each individual
surface zJ���,A�= f�x ,y�, is displayed. For the sake of compari-
son, we also include in the figure the corresponding values of
the normalized fractal dimension of the emission surfaces
df /dmax f. It can be noticed that by increasing the value of the
anode potential �A���, the rate between df ,J /d�f , J�max

increases
monotonically. For large fixed value of �A��� all current sur-

faces zJ���,A� have similar fractal dimensions, so that the
points for df ,J /d�f , J�max

as function of � shows plateaus, while
the corresponding ratio for the equipotential emitting sur-
faces decreases in a quite pronounced way. If we compare
Figs. 4 and 5, we notice that, for large values of the potential,
all curves in the Fowler plot for different emitting surfaces
have similar slopes. This correlates with the existence of the
plateau for the current surfaces zJ���,A� in Fig. 5. As the value

of �A��� decreases, the FPs have different slopes, causing the
plateau to be less and less pronounced. These results for the
fractal dimension of zJ���,A� suggest that it may exist a depen-
dence with the emitting surface since the behavior is similar
to that of the fractal dimension of the emitting surface ��.
This leads to the existence of a direct correlation between the
fractal dimension of zJ���,A� and the local-field amplification
factor. In the present work, this factor is defined as the ratio

between the local field of a point in a rough profile Ē�r�� and
the corresponding uniform field resulting from a potential
difference �A��� and the distance M, as described at the end
of Sec. II. This factor can be experimentally measured from
the lifetime of voltage pulses tp �i.e., the decay time td�,
which are able to cause damages in the emitting surface
structure.20

Finally, we would like to stress that from the series of
results presented here it is quite evident that, at low values of
electric field, a strong correlation between the emitting prop-
erties and the fractal dimension of the surface is found. In
designing emitters for particular purposes, self-similar mi-
croirregularities at a given scale interval then plays an im-
portant role.

IV. SUMMARY AND CONCLUSIONS

In this work we investigated how the geometrical features
of irregular surfaces are related to cold emission properties
of conducting materials. Our analysis requires, in first place,
the numerical integration of Laplace equation in a three-
dimensional region bounded by a plane and a rough surface.
One of these surfaces is a rough surface mimicking the emit-
ting cathode, while a far away plane aims to describe the
corresponding anode. Several features of our results agree
well with experimental reports for electron emission by an
irregular tungsten surface subject to an electric field 8
�106 V /cm. The results reported here also allow to esti-
mate to which extension the electronic emission is influenced
by the surface roughness, at low values of the emission field.

We believe that these results can help to explain some
differences between theoretical calculations with smooth ge-
ometries and experimental studies, which predict high values
of the field amplification factor and very small values of
effective emitting area. We have shown that our results sug-
gest that the fractal dimension may be related to the field
amplification factor, while the total emission current is deter-
mined by the roughness of the surface. Then, in general
terms, the emitting properties are related to the fractal struc-
ture of the surface emitter in a twofold way: �i� the existence
of protuberances with respect to a average ground height and
�ii� the contribution to an effective-field amplification pro-
duced by irregularities at nanometric scales.

FIG. 5. �Color online� Normalized fractal dimension of the
emission current surfaces zJ���,A�: triangles, circles, and diamonds
correspond to �A=150, 300, and 450 V, respectively. For compari-
son, we also plot �squares� here the normalized fractal dimension of
the emission surfaces z��

, obtained from the data in the inset of Fig.
2.
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